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a b s t r a c t

Self-assembled few-layer graphene–carbon nanotube (FLG–CNT) composites were prepared and their
field emission (FE) properties before and after high-temperature (H-T) processing were investigated.
It was found that their FE performance deteriorated slightly when they were processed at 1273 K for 5 h
before the FE tests; the applied field increased �0.05 V/μm at 10 mA/cm2. X-ray photoelectron
spectroscopy analysis indicates that the decreased amount of SP3-hybridized defects from 39.91% to
23.87% after the H-T processing directly leads to this FE degradation. However, the largest emission
current density (Jmax) of the FLG–CNT composites increased from 33.48 to 64.00 mA/cm2 after the H-T
processing. This improved FE performance was attributed to the enhanced adhesion between the CNT
and substrates. We consider that the catalyst wrapping at the CNT foot after the H-T processing is
responsible for this CNT–substrate reinforcement.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Carbon nanotubes (CNTs) can serve as high-performance field
emitters due to their high aspect ratio and excellent conductivity
[1–3]. Various strategies have been used to improve the field
emission (FE) properties of CNTs, such as element doping [4], ion
irradiation [5], and chemical processing [6]. We have demon-
strated a promising approach to fabricating high-performance
field emitters by compositing CNT with vertical graphenes in our
previous studies [7,8]. These self-assembled composites, having
both the large aspect ratio of CNTs and the outstanding FE stability
of graphenes, were found to have excellent FE properties. How-
ever, the largest emission current density (Jmax) of these compo-
sites was no more than 30 mA/cm2 in most cases, which is
detrimental for applications requiring large current FE.

In the present study, we fabricated few-layer graphene–carbon
nanotube (FLG–CNT) composites, employed a simple high-
temperature (H-T) processing method to improve their Jmax, and
proposed a possible mechanism to illustrate this FE enhancement.

2. Experimental

The CNTs were fabricated by using thermal chemical vapor
deposition, and FLGs were prepared by using radio frequency
sputtering deposition. The composites were then annealed at
1273 K for 5 h in H2 ambient. All the experimental details are
shown in Methods of the Supplementary material (pages S1–S4),
and the corresponding images are shown in Figs. S1 and S2.

The samples were characterized by a scanning electron micro-
scope (SEM), a transmission electron microscope (TEM), X-ray
photoelectron spectroscopy (XPS), and a photoelectron spectro-
meter for structural information. The FE tests were carried out by
using a traditional diode setup in vacuum (�1.0�10�7 Pa) at
room temperature. Details for the sample characterizations and
the FE tests are shown in Methods of the Supplementary material
(pages S4–S6), and the corresponding image is shown in Fig. S3.

3. Results and discussion

Fig. 1(a) shows the SEM image of FLG–CNT composites. It can be
seen that the CNTs are densely packed and well aligned, and FLGs
are sparsely distributed on the tips of CNTs (inset of Fig. 1(a)). We
have found in our previous study that this sparse distribution of
FLGs on the CNT tips, which not only introduces a great amount of
sharp FLG edges but also preserves the field enhancement from
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the CNTs, is beneficial for high-performance FE [8]. Fig. 1(b) shows
the high-resolution TEM image of a FLG–CNT hybrid, indicating
that the FLG growth is self-assembled. We have observed 8 FLG
edges, the high-resolution TEM images of which are shown in
Fig. S4 of the Supplementary material, which show that our FLGs
have 5 layers on average. The sharp FLG edges are believed to
facilitate the electron tunneling during FE [9].

Fig. 2(a) shows the FE properties of FLG–CNT composites before
and after the H-T processing presented in terms of emission
current density (J) versus applied field (E), i.e., the J–E curves.
These two J–E curves were obtained right after an aging process
took place. In this process, continuous FE from our composites was
performed at a constant Ewhen Jwas around 10 mA/cm2 for 5 h to
remove any absorbate on the emitters [10]. It can be seen that the
FE performance of FLG–CNT composites deteriorates slightly after
the H-T processing, as seen from the right-shift of the J–E curves.
For example, the threshold field (Eth, E at 10 mA/cm2) increases
�0.05 V/μm after the H-T processing. Replotting of the data as
ln (J/E2) versus 1/E, i.e., the F–N plots, as shown in the inset of
Fig. 2(a), indicates typical F–N type FE behavior [11]. By using
a photoelectron spectrometer, the work function (Φ) of the FLG–
CNT composites is obtained. It increases slightly from 4.67 to
4.71 eV after the H-T processing. With Φ and the constant F–N
slopes in the low-current regions, the field enhancement factor (β)
of the FLG–CNT composites before and after the H-T processing
can be determined as 4794 and 3733, respectively. In comparison
with the little change of Φ, the great change of β indicates that
the structure of our emitters changes dramatically after H-T

processing. We attribute this structural change to decrease of
SP3-hybridized defects, which can be evidenced by the XPS spectra
shown in Fig. 2(b) and (c); the fraction of SP3-hybridized carbon
(centered at 285 eV) decreases from 39.91% to 23.87% after the H-T
processing [12]. In comparison with the planar SP2-hybridized
defects, the distorted SP3-hybridized defects can improve FE
properties of emitters by means of introducing new active emis-
sion sites [13]. The H-T processing decreases the amount of SP3-
hybridized defects and thus deteriorates the FE performance of the
FLG–CNT composites.

Fig. 3(a) and (b) shows the FE J–E curves of FLG–CNT compo-
sites in different testing circles before and after the H-T processing,
respectively. The circular testing method has been clearly illu-
strated in the Methods of the Supplementary material (pages S5
and S6). The right-shift of J–E curves with the increase of testing
circles indicates a Joule heating induced decrease of active emis-
sion sites [14,15]. It is interesting that Jmax, obtained when a
breakdown occurs during FE (corresponding with the last testing
circle), increases dramatically from 33.48 to 64.00 mA/cm2 after
the H-T processing. The FE breakdown usually occurs when some
of the emitters are pulled out from the substrates due to the
electrostatic force at the emitters during FE; this increase of Jmax

thus suggests the increase of adhesion between the emitters and
substrates. We can roughly evaluate this enhanced adhesion.
Assuming that the electric quantity of aggregated electrons at
the emission sites is q, which is proportional to J (q¼KJ, where K is
a constant); the critical (largest) electrostatic force, which is firmly
related to the adhesion between the emitters and substrates, can

Fig. 1. (a) SEM image of the FLG–CNT composites. (Inset) Enlarged image showing the distribution of FLGs on the CNT tips. (b) High-resolution TEM image showing a FLG–
CNT hybrid.
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Fig. 2. (a) FE J–E curves of FLG–CNT composites. (Inset) Corresponding F–N plots given in terms of ln (J/E2) and 1/E. XPS spectra of FLG–CNT composites (b) before and
(c) after the H-T processing.
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be obtained: F¼qE¼KJE. According to this rough calculation, the
ratio of electrostatic force after and before the H-T processing
(Fafter/Fbefore) is determined to be �2.25. We ascribe this enhanced
adhesion to the changed catalyst morphology, as schematically
shown in Fig. 3(c). The H-T processing induced aggregation of
catalyst will wrap the CNT foot and thus reinforce the adhesion
between the CNT and substrate. The catalyst here plays a role
similar to the wetting layer that used to reinforce the adhesion of
CNTs to substrates reported previously [16,17]. By reproducing the
growth conditions of FLG–CNT composites without carbonaceous
gas, this catalyst aggregation can be clearly observed: the average
diameter of the catalysts increases dramatically after the H-T
processing, as shown in Fig. 3(d) and (e).

4. Conclusions

We have studied the influence of H-T processing on the FE
performance of FLG–CNT composites. The right-shift of J–E curves
indicated that the FE properties deteriorate slightly after the H-T
processing. Based on the XPS analysis, this degradation of FE was
ascribed to the decrease of SP3-hybridized defects. In addition, Jmax

of our FLG–CNT composites increased from 33.48 to 64.00 mA/cm2

after the H-T processing. This increased FE performance was
attributed to the enhanced adhesion between the CNT and the
substrate after the H-T processing. We consider that the catalyst
wrapping at the CNT foot after the H-T processing is responsible
for this CNT–substrate reinforcement. Together with the low
applied fields (less than 2 V/μm), our H-T processed FLG–CNT
composites may find applications requiring large current FE.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.matlet.2014.03.035.
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Fig. 3. FE J–E curves of FLG–CNT composites in different testing circles (a) before and (b) after the H-T processing. (c) Schematic illustration for the improved adhesion
between CNT and substrate. SEM images showing the morphology of catalysts (d) before and (e) after the H-T processing; the scale bars in (d) and (e) are 400 nm.
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